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Abstract

Coisotropic deformations of algebraic varieties are defined as those for which
an ideal of the deformed variety is a Poisson ideal. It is shown that coisotropic
deformations of sets of intersection points of plane quadrics, cubics and
space algebraic curves are governed, in particular, by the dKP, WDVV, dVN,
d2DTL equations and other integrable hydrodynamical type systems. Particular
attention is paid to the study of two- and three-dimensional deformations of
elliptic curves. The problem of an appropriate choice of the Poisson structure
is discussed.

PACS numbers: 02.30.Ik, 02.40.Re, 02.30.Jr
Mathematics Subject Classification: 37K10, 14H70

1. Introduction

Algebraic varieties (curves, etc) and their deformations are important ingredients in various
branches of mathematics and mathematical physics. The theory of integrable nonlinear
differential equations has probably been the most active area in recent years where these objects
and their properties have been intensively studied. Two best known examples of such a study
are given by the theory of the finite-gap solutions and the theory of the Whitham equations
[20, 25]. The problem of characterization and classification of integrable deformations of
algebraic curves has attracted particular interest. In the papers [19, 20] Krichever formulated
a general theory of hierarchies of integrable equations of hydrodynamical type on a Riemann
surface of arbitrary genus arising in the Whitham averaging method.

An alternative approach for determining and classifying the so-called quasiclassical
deformations of algebraic curves (i.e. deformations given by hydrodynamical systems) has
been proposed in [10, 11, 17]. This approach revealed a deep connection between the structure
of possible deformations of algebraic curves and their basic algebraic properties like the Galois
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group [11, 17]. A quite different method of the study of the Whitham equations has been
discussed recently by Magri [24]. Deformations studied in the papers [10, 11, 17, 24] are all
two dimensional, i.e. parametrized by two variables.

In the present paper, we will introduce and study a novel class of deformations of algebraic
curves, surfaces and algebraic varieties, the class of coisotropic deformations. A concept of
coisotropic deformations of associative algebras has been formulated recently in the papers
[13–15]. The notions of coisotropic submanifold and Poisson ideal are the basic ones for this
approach. Here we will show that essentially the same idea provides us with a simple and
transparent way to define and describe coisotropic deformations of algebraic varieties in affine
spaces. Namely, coisotropic deformations of algebraic variety are those for which an ideal of
deformed variety is a Poisson ideal, i.e. it is closed with respect to the Poisson bracket. We will
consider simple examples of algebraic varieties such as sets of intersection points of algebraic
curves, algebraic curves and hypersurfaces. It is shown that the coisotropic deformations of
these objects are governed by systems of differential equations of hydrodynamical type which
in particular cases coincide with well-known integrable systems like the dispersionless KP
equation, WDVV equation and dispersionless 2DTL equation.

We will concentrate on the study of the coisotropic deformations on plane and three-
dimensional quadrics and cubics. Particular attention will be paid to the study of the three-
dimensional coisotropic deformations of elliptic curves. The problem of choice of the Poisson
structure is discussed too. It is shown that such a choice is crucial for the construction of
nontrivial coisotropic deformations.

The paper is organized as follows. The general formulation of coisotropic deformations
of algebraic varieties is discussed in section 2. Coisotropic deformations of the sets of
intersection points of algebraic curves on the plane are considered in section 3. It is shown
that two particular classes of deformations are governed by the stationary dKP equation
and WDVV equation. Section 4 is devoted to deformations of plane cubics. Deformations
of the space curves are discussed in section 5. The dKP equation and the dispersionless
Veselov–Novikov equation govern coisotropic deformations of the special space curves. Two-
dimensional coisotropic deformations of the elliptic curve are studied in section 6. The
problem of choice of the Poisson structure is discussed here too. In section 7, we consider
three-dimensional deformations of elliptic curves. Deformations of curves and hyperplanes in
R4 described by the Boyer–Finley d2DTL equation and the heavenly equation are presented
in section 8.

2. Coisotropic deformations of algebraic varieties

The notion of coisotropic submanifold is a basic ingredient in the formulation and description
of coisotropic deformations of associative algebras studied in [13, 14]. The coisotropic
submanifold � is a submanifold in R2n endowed with the Poisson bracket {,} such that
�ᵀ ⊂ �, where �ᵀ denotes a skew-orthogonal complement of � in R2n (see e.g. [2, 27]). The
coisotropic submanifold can be defined as the zero locus � for the set of functions fj (y), i.e.

fj (y) = 0, j = 1, . . . , m, (1)

such that {
fj (y), fk(y)

} |� = 0, j, k = 1, . . . , m, (2)

where y1, . . . , yn are local coordinates in R2n. The definition (1), (2) is equivalent to the
condition that all the Hamiltonian fields generated by fj (y) are tangent to �, or to the
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condition that the ideal J = 〈fj 〉 generated by the functions fj (y) is closed {J, J } ⊂ J , i.e.
it is a Poisson ideal [2, 27]. For associative algebras, functions (1) are of the form [13]

fjk = −pjpk +
n∑

l=1

Cl
jk(x)pl, j, k = 1, . . . , n, (3)

where pj , xj (j = 1, . . . , n) are suitable canonical Darboux coordinates in R2n. Conditions
(2) define the coisotropic deformations of the structure constants Cl

jk(x) of an associative
algebra in a given basis. It was shown in [14] that this approach is applicable to the other
algebraic structures like the Jordan triples. In geometrical terms, equations (1) and (3) with
fixed x represent a set of special quadrics in Rn.

Here, we will use the notions of Poisson ideal and coisotropic submanifold in a different
setting. It will serve us to define and describe a class of deformations of algebraic varieties.
Thus, let us consider an algebraic variety M in Rn defined by the equations

fj (p1, . . . , pn) = 0, j = 1, . . . , m, (4)

where p1, . . . , pn are local affine coordinates in Rn.
To define deformation of this variety,

(i) we assume that the coefficients of the polynomials fj (p1, . . . , pn) depend on the
deformation parameters x1, . . . , xn,

(ii) we embed the variety M into the space R2n equipped with the Poisson bracket {, } and
local coordinates p1, . . . , pn, x1, . . . , xn,

(iii) then we consider an ideal J = 〈fj (p; x)〉 generated by the functions fj (p; x) and require
that this ideal is closed

{J, J } ⊂ J (5)

or equivalently

{fj (p; x), fk(p; x)} |�= 0, j, k = 1, . . . , m, (6)

where � is the locus of common zeros for the functions fj (p, x), i.e.

� = {(p, x) | fj (p; x) = 0, j = 1, . . . , m}. (7)

In other words, we require that the ideal J of the deformed variety M is a Poisson ideal.

Definition 1. Deformations of the algebraic variety M defined by equations (4) are called
coisotropic if the ideal J = 〈fj (p; x)〉 of the deformed varieties is a Poisson ideal.

So, coisotropic deformations of an algebraic variety are those for which coefficients of
the functions fj (p, x) are such that conditions (6) are satisfied, i.e. the submanifold � defined
by (7) is a coisotropic submanifold.

The coisotropy conditions (6) impose constraints on the coefficients of the polynomials
fj (p; x). We will refer to the corresponding system of equations for these coefficients as
the central system (CS). The concrete form of CS depends on the choice of fj (p; x) as well
as the form of the Poisson bracket {, }. The choice of the Poisson bracket is a crucial one.
For inadequate choice of {, } one may have no nontrivial deformation. The consistency of
the Poisson structure {, } with the polynomials fj (p; x) is an important point of the approach
under consideration.

At m = n the variety M is a set of intersection points of n algebraic curves fj (p) = 0 in
Rn and coisotropic deformations of each of these points span Lagrangian submanifolds in R2n.
At m = n−1 the variety M is a curve in Rn and conditions (6) define coisotropic deformations
of this curve and so on. Clearly, the codimension of the algebraic variety should be greater
than or equal to 2, i.e. m � 2 in order to be able to define its coisotropic deformation.
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3. Coisotropic deformations on the plane: deformations of the sets of intersection

points and curves

On the plane, the variety M is defined by two equations

f1(p, q) = 0 (8)

and

f2(p, q) = 0, (9)

where the affine coordinates on the plane are denoted by p and q. The coisotropic deformations
of the variety M, i.e. the set of intersection points of the curves (8) and (9), is defined by the
condition

{f1(p, q; x, y), f2(p, q; x, y)} |� = 0, (10)

where x and y stand for the deformation parameters. The coisotropic submanifold � in this
case is a two-dimensional Lagrangian submanifold.

This construction admits an alternative interpretation. Indeed, let us have the algebraic
curve given by equation (8). One can define the deformation of this curve in the following way.
First, we assume that the coefficients of the polynomial f1(p, q) depend on the deformation
parameters x and y. Then we take a function f2(p, q; x, y) which is a polynomial in p and q.
Finally, we require that the functions f1 and f2 obey the coisotropy condition (10).

Definition 2. If the coefficients of the polynomial f1(p, q) are such that condition (10) is
satisfied, then it is said that they define the coisotropic deformation of the curve (8) generated
by the function f2(p, q; x, y).

Clearly, this definition is a reciprocal one: if the polynomial f2 generates coisotropic
deformation of the curve (8), then at the same time the polynomial f1 generates coisotropic
deformation of the curve (9).

Let us begin with the simplest case of the second-order curves (8) and (9). As is well
known, any nondegenerate quadric is equivalent to

(i) the parabola

q + p2 + ap + b = 0, (11)

(ii) or the ellipse

ap2 + bq2 + cp + dq + f = 0, (12)

(iii) or the hyperbola

pq + ap + bq + c = 0. (13)

To construct coisotropic deformation, we choose the canonical Poisson bracket in R4, i.e.
{F,G} = ∂F

∂p
∂G
∂x

+ ∂F
∂q

∂G
∂y

− ∂F
∂x

∂G
∂p

− ∂F
∂y

∂G
∂q

.
We consider first a parabola and choose f2 as an arbitrary polynomial f2(p, q; x, y). The

submanifold

f1 = q + p2 + a(x, y)p + b(x, y) = 0, (14)

f2(p, q; x, y) = 0 (15)
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can be equivalently represented as the zero locus of the functions

f1 = q + p2 + a(x, y)p + b(x, y) = 0,

f̃2 =
N∑

k=0

αk(x, y)pk = 0
(16)

with certain N and αk(x, y). In the simplest case N = 1, a = 0 and α1 = 1 the coisotropy
condition (10) gives α0x = 0, by = α0y , i.e. the deformation is the trivial shift of the parabola:
b = β0(x) + β1(y), where β0(x) and β1(y) are arbitrary functions.

In the case N = 2 one has α2 = 1 and the CS takes the form

α1y − 2α1α1x + (aα1)x + 2(α0 − b)x = 0,

α0y + aα0x − α1bx + 2α0(a − α1)x = 0.
(17)

At α0 = a = b = 0, it is the Burgers–Hopf equation α1y − 2α1α1x = 0. Equations (17)
describe the coisotropic deformations of the two points of intersection (p+, q+), (p−, q−)

(assuming α2
1 � 4α0)

p± = −α1(x, y)

2
±

√
1

4
α2

1(x, y) − α0(x, y),

q± = (α1 − a)p± + α0 − b (18)

of the curves (16) or equivalently of the parabola

q + p2 + ap + b = 0 (19)

and a straight line

q + (a − α1)p + b − α0 = 0. (20)

Now let us consider the cubic polynomial f2, i.e. a set of intersection points for the curves

q + p2 + ap + b = 0 (21)

and

p3 + α2p
2 + α1p + α0 = 0. (22)

The CS in this case is of the form

α2y + 2α1x − 3bx + (aα2)x − (
α2

2

)
x

= 0,

α1y + 2α0x + aα1x + 2α1ax − 2α1α2x − 2α2bx = 0,

α0y + aα0x − α1bx + α0(3a − 2α2)x = 0.

(23)

This system contains several reductions of interest. There are two distinguished between
them. The first is given by a = α2 = 0. The first equation (23) then implies that 2α1 = 3b

and the rest two equations take the form

3by + 4α0x = 0,

4α0y − 3(b2)x = 0.
(24)

It is the well-known stationary dispersionless Kadomtsev—Petviashvili (KP) or Khokhlov—
Zabolotskaya equation (see e.g. [13, 14]). Equations (24) imply the existence of the function
F such that b = 2Fxx, α0 = − 3

2Fxy and the system (24) becomes

Fyy + 2(Fxx)
2 = 0. (25)

It is the Hirota equation for the stationary dKP equation.
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The second reduction is given by the constraints α1 = 2b, α2 = a. The CS (23) then is
converted to

ay + bx = 0,

by + α0x = 0,

α0y + (aα0 − b2)x = 0.

(26)

This system of conservation laws implies the existence of the function F such that

a = Fxxx, b = −Fxxy, α0 = Fxyy (27)

in terms of which it is reduced to the single equation

Fyyy + FxxxFxyy − (Fxxy)
2 = β(y), (28)

where β(y) is an arbitrary function. At β = 0, it is the celebrated WDVV equation [3, 5, 28].
Note that the system (26) has appeared for the first time in the paper [7].

Thus, the stationary dKP equation and the WDVV equation describe coisotropic
deformations of the set of intersection points of the curves (21) and (22). The locus of
common zeros for the polynomials (21) and (22) coincides with the zero locus of the parabola

q + p2 + ap + b = 0, (29)

and the hyperbola

f̃2 = pq + (α2 − a)q + (b − α1 + a(α2 − a))p + b(α2 − a) − α0 = 0. (30)

For the stationary dKP case, the equation of hyperbola takes the form

pq − 1
2bp − α0 = 0, (31)

while for the WDVV case one has

pq − bp − α0 = 0. (32)

It would be of interest to clarify the geometrical difference between the dKP and WDVV
cases.

The above construction also shows that the stationary dKP and WDVV equations describe
at the same time special classes of coisotropic deformations for the hyperbola (13) generated
by parabola (21).

As the last illustrative example in this section we consider coisotropic deformations of a
circle

f1 = p2 + q2 + u = 0. (33)

With the choice

f2 = p3 − 3pq2 + ap + bq = 0 (34)

the CS takes the form

(ua)x + (ub)y = 0, 3ux − ax + by = 0, 3uy + ay + bx = 0.

It is the stationary dispersionless Veselov—Novikov (dVN) equation (see [13]). It also
describes the coisotropic deformations of the set of intersection points of the circle (33) and
the cubic (34).

Considering higher order polynomials f2, one gets coisotropic deformations described by
the stationary higher dKP and dVN equations.

6
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4. Deformations of plane cubics

The general form of the plane cubic is (f1
.= ζ )

ζ = p2 − q3 − u4pq − u3q
2 − u2p − u1q − u0 = 0. (35)

Choosing the linear second equation, i.e. the straight line

f2 = αp + βq + γ = 0 (36)

and canonical Poisson bracket, one gets the following CS (α = 1):

β2u4x − βu4y − 2ββy + 3β2βx + 3γx − u4βy + u3βx + βu3x − u3y + 2βu4βx = 0,

βγ u4x − βu4γx + 3βu2βx − u1y + 2γ u4βx − u4γy − u2βy − γ u4y

−2u3γx − βu4y + 2u1βx + βu1x + 6βγβx − 2γβy + β2u2x − 2βγy = 0, (37)

βu0x − u1γx − u2γy − u0y + 3u0βx − γ u2y − 2γ γy + 3γ 2γy

+ βγu2x − γ u4γx + 3γ u2βx = 0.

The variety M for choice (36) consists of at most three points of intersection of the cubic
(35) with the straight line (36). Coisotropic deformations of these three points are described
by the CS (37) and generate three surfaces in R4.

In the particular case u4 = u3 = u2 = 0, α = 1, γ = 0, the CS system takes the form

βy − 3
2ββx = 0, (38)

u1y − βu1x − 2u1βx = 0, (39)

u0y − βu0x − 3u0βx = 0. (40)

These equations describe deformations of the moduli u1 and u0 of the elliptic curve. The
behaviour of the moduli is defined completely by the solution of the Burgers–Hopf equation
for β. For the discriminant � = 16(4u3

1 + 27u2
0) of the elliptic curve (see e.g. [22, 23]) one

has the equation

�y − β�x − 6βx� = 0, (41)

while the deformation of the invariant j = 123 4u3
1

4u3
1+27u2

0
= 3346 u3

1
�

is defined by the equation

jy − βjx = 0. (42)

We see that at the points of the gradient catastrophe for the Burgers–Hopf equation where
βx, βy → ∞ the moduli u1, u0 and the discriminant � exhibit gradient catastrophe behaviour
too.

Stationary solutions of the CS (37) with constants u4, u3, u2, u1, u0 are of interest too.
It would correspond to Abel’s approach to the law of addition on the cubic (see e.g. [23],
section 2.14). In the case u4 = u3 = u2 = 0 the CS (37) is reduced to the system

2ββy + 3β2βx + 3γx = 0,

2u1βx + 6γββx + 2(γβ)y = 0, (43)

−u1γx + 3u0βx + γ γy + 3γ 2βx = 0.

This overdetermined system, obviously, may have nontrivial solutions only for very special
β, γ and constant u0, u1.

For the general polynomial f2 the variety M also has the basis

ζ = 0, (44)

f̃2 = α(q) + β(q)p, (45)

where α(q) and β(q) are arbitrary polynomials in q.

7
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5. Deformations of space curves

In three and more dimensional spaces a zoology of algebraic varieties is richer and
correspondingly their deformations form a much larger collection of different cases.

In the three-dimensional affine space an algebraic curve is defined by two polynomial
equations

f1(p1, p2, p3) = 0, f2(p1, p2, p3) = 0. (46)

Coisotropic deformations of this curve are defined by the condition

{f1(p; x), f2(p; x)}|� = 0. (47)

A coisotropic submanifold � typically is the four-dimensional submanifold in R6.
A simple example is provided by the twisted cubic defined by the equations

f1 = p2 + p2
1 + u = 0 (48)

and

f2 = p3 + p3
1 + vp1 + w = 0, (49)

which is one of the first standard examples in all textbooks on algebraic geometry. The CS
with the choice of canonical Poisson bracket in R6 in this case is given by the equations

ux3 + vux1u − wx2 = 0,

vx2 + 2wx1 = 0,

3ux2 − 2vx1 = 0.

(50)

So, v = 3
2u and one has the system

ux3 + 3
2ux1u − vx2 = 0,

3ux2 + 4vx1 = 0,
(51)

which is the dKP equation. Thus, the three-dimensional coisotropic deformations of the
twisted cubic in R3 are governed by the dKP equation. For polynomial solutions of the dKP
equation the family of the deformed varieties in R6 defined by the equations

f1 = p2 + p2
1 + u(x1, x2, x3) = 0, (52)

f2 = p3 + p3
1 + 3

2u(x1, x2, x3)p1 + w(x1, x2, x3) = 0 (53)

(i.e. the submanifold �) is the algebraic variety too.
We note that on the plane p2, p3 the twisted cubic (48), (49) is the cubic curve given by

the equation

p3
2 + p2

3 + (3u − 2v)p2
2 + 2wp3 + (v2 + 3u2 − 4vu)p2 + (u3 + w2 − 2vu2 + v2) = 0.

It is obvious, however, that this cubic curve is degenerate for all the values of u and v since it
has polynomial parametrization given by (48), (49). Deformations of nondegenerate elliptic
curves will be studied in the next section.

Choosing

f2 = pn + pn
1 +

n−2∑
k=0

vkp
k
1, (54)

one constructs the coisotropic deformations of the nth-order curve in R3. These deformations
are described by the higher dKP equations.

8
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Another simple example corresponds to

f1 = p2
1 + p2

2 + u = 0, (55)

f2 = p3 + p3
1 − 3p1p

2
2 + ap1 + bp2 = 0. (56)

This curve M is the intersection of the cylinder defined by the first equation and the cubic
surface given by the second equation.

The coisotropy condition gives rise to the following CS:

ux3 + (ua)xx
+ (ub)x2 = 0,

3ux1 − ax1 + bx2 = 0,

3ux2 + ax2 + bx1 = 0.

It is the dVN equation (see e.g. [14]). For higher order f2 coisotropic deformations are
described by the higher dVN equations.

Finally, let us consider the case

f1 = p1p2 + up1 + v = 0,

f2 = p3 + αp2
1 + βp2

2 + ap1 + b = 0.

This curve is the intersection of the cylindric hyperbola and paraboloid. Its coisotropic
deformations are described by the following CS:

ux3 + aux1 − β(u2)x2 + 2αvx1 − bx2 = 0,

vx3 + (av)x1 − 2β(uv)x2 = 0,

ax2 − 2αux1 = 0,

bx1 − 2βvx2 = 0.

This hydrodynamical system has distinguished reductions. At a = 0, α = 0, β = 1
2 it is the

(2+1)-dimensional generalization of the one-layer Benney system proposed in [20, 30]. At
β = −α = 1

2 it is the dispersionless Davey–Stewartson system considered in [12].
We note that deformations considered in this section can also be treated as coisotropic

deformations of a surface given by the equation f1(p1, p2, p3) = 0 generated by a surface
defined by the equation f2(p1, p2, p3) = 0 (or vice versa).

6. Coisotropic deformations of an elliptic curve: two-dimensional case

Now we will consider coisotropic deformations of nondegenerate cubics. This case is of
importance since it provides us with the example of deformations for an algebraic curve of
nonzero genus.

The general cubic is given by equation (35), i.e.

E = p3
2 − p2

3 − u4p2p3 − u3p2
2 − u2p3 − u1p2 − u0, (57)

where for further convenience we have changed the notation (p = p3, q = p2). To construct
coisotropic deformations of the cubic (57) we choose the canonical Poisson structure in R6

and functions

fn = pn − αn(p2) − βn(p2)p3 = 0, (58)

where α and β are the polynomials in p2 with coefficients depending on the deformation
variables x2, x3, xn.

It is quite instructive to consider first the particular deformations which correspond to
a cyclic variable x2, i.e. when ui = ui(x3, xn). In this case p2 appears in (57), (58) as a
parameter λ = p2 and the corresponding deformations of cubic (57) are two-dimensional.

9
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So we consider the cubic

E = p2
3 − λ3 − u4λp3 − u3λ

2 − u2p3 − u1λ − u0 = 0. (59)

We choose the generating function (58) as

f5 = p5 − v3λ
2 − v1λ − v0 − (v2 + λ)p3 (60)

in order to get a CS allowing deformations for all coefficients ui of the cubic. The coisotropy
condition

{f5, E}|� = 0

gives the system

∂u4

∂x3
+ 2

∂v3

∂x3
= 0

∂u3

∂x3
+ 2

∂v2

∂x3
− u4

∂v3

∂x3
= 0

u4
∂v2

∂x3
− ∂u4

∂x5
+

∂u4

∂x3
v2 +

∂u2

∂x3
+ 2

∂v1

∂x3
= 0

−∂u3

∂x5
+

∂u1

∂x3
− u2

∂v3

∂x3
+

∂u3

∂x3
v2 − u4

∂v1

∂x3
+ 2

∂v2

∂x3
u3 = 0 (61)

−∂u2

∂x5
+ 2

∂v0

∂x3
+

∂u2

∂x3
v2 + u2

∂v2

∂x3
= 0

−∂u1

∂x5
+

∂u0

∂x3
+

∂u1

∂x3
v2 − u4

∂v0

∂x3
− u2

∂v1

∂x3
+ 2

∂v2

∂x3
u1 = 0

−∂u0

∂x5
+

∂u0

∂x3
v2 − u2

∂v0

∂x3
+ 2

∂v2

∂x3
u0 = 0.

In this and the following sections in order to avoid triple indices, we write the derivatives in
the explicit way. The first two equations imply that

v3 = − 1
2u4 v2 = − 1

2u3 + 1
4u4

2

and the system (61) becomes the system of five equations for u0, u1, u2, u3, u4. The fields v1

and v0 can be considered as a couple of gauge fields.
This system admits several reductions. The most interesting one corresponds to the

constraint u4 = 0, u2 = 0. In this case v3 = 0, 2v2 = −u3, 2v1 = −u2, v0 = 0 and the above
system is converted into the following:

∂u3

∂x5
= −3

2

∂u3

∂x3
u3 +

∂u1

∂x3
,

∂u1

∂x5
= −1

2

∂u1

∂x3
u3 − ∂u3

∂x3
u1 +

∂u0

∂x3
,

∂u0

∂x5
= −∂u3

∂x3
u0 − 1

2

∂u0

∂x3
u3,

(62)

which is the well-known three-component dispersionless KdV equation (see e.g. [8]).
Solutions of this system describe (1+1)-dimensional coisotropic deformations of the elliptic
curve Er = p3

2 − λ3 − u3λ
2 − u1λ − u0 generated by the standard symplectic form and the

polynomial f5r = p5 − λp3 + u3
2 p3.

This evolution coincides with that obtained earlier in a totally different manner in [10].
In order to complete the comparison with the results presented in the paper [10] we will show
how coisotropic deformations give rise to the corresponding system in terms of Riemann

10
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invariants. First we present the elliptic curve in the form Ee = p3
2 − (λ− e1)(λ− e2)(λ− e3).

Then it is a simple check that the coisotropy condition

{Ee, f5}|� = 0 (63)

is equivalent to the three-component dKP system in terms of Riemann invariants, i.e

∂e1

∂x5
=

(
3

2
e1 +

1

2
e2 +

1

2
e3

)
∂e1

∂x3
,

∂e2

∂x5
=

(
1

2
e1 +

3

2
e2 +

1

2
e3

)
∂e2

∂x3
, (64)

∂e3

∂x5
=

(
1

2
e1 +

1

2
e2 +

3

2
e3

)
∂e3

∂x3
.

From the algebro-geometrical characterization viewpoint three of five parameters ui, i =
0, 1, 2, 3, 4, for an elliptic curve are redundant (see e.g.[22]). Only two special combinations
of ui (moduli g2 and g3) are essential and the canonical form of the elliptic curve is

Ec = π3
2 − (

π2
3 + g2π2 + g3

) = 0. (65)

The moduli g2 and g3 are given by the formulae [22]

g2 = u1 − 1
3u3

2 g3 = u0 + 2
27u3

3 − 1
3u1u3, (66)

where for the sake of simplicity we choose u4 = u2 = 0. The general cubic (57) is converted
into the canonical form by admissible transformation (u4 = u2 = 0) [22]:

p2 = π2 − 1
3u3 p3 = π3. (67)

Direct calculation gives the following equations for moduli:

∂g2

∂x5
= ∂g3

∂x3
− 5

6

∂g2

∂x3
u3 − 2

3

∂u3

∂x3
g2,

∂g3

∂x5
= −5

6

∂g3

∂x3
u3 − 1

3

∂g2

∂x3
g2 − ∂u3

∂x3
g3, (68)

∂u3

∂x5
= ∂g2

∂x3
− 5

6

∂u3

∂x3
u3.

This system contains not only moduli but also the function u3. One can, in principle, express
u3 in terms of g2 and g3 solving the third of the above equations (Burgers–Hopf equation with
the source) or equivalently solving the Hamilton—Jacobi equation

φx5 + 5
12

(
φx3

)2 − g2 = 0, (69)

where φx3 = u3.
Thus, the system (68) governs the coisotropic deformations of moduli of the elliptic curve

parametrized by two variables x3 and x5. Equations (68) allow us also to find deformations
of the discriminant � and invariant J of the elliptic curve. The corresponding equations are
rather complicated and we do not present them here. For illustration we consider the following
simple solution of the system (68) (C is an arbitrary constant):

u3 = C,

u1 = x5 − C2

4
,

u0 = x3 − C

2
x5 +

C3

6
,

(70)

11
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which provides us with a simple, linear deformation of the elliptic curve. For this solution the
discriminant is equal to

�(x3, x5) = 16
(
4x5

3 + 47
4 x5

2C2 − 21
2 x5C

4 + 49
24C6 + 27x3

2 − 45x3x5C + 35
2 x3C

3
)
. (71)

In the particular case C = 0, we have �(0, 0) = 0 and so at x3 = x5 = 0 the curve is singular.
Deformation (variation of x3 and x5) however generically desingularizes it. Conversely, if
C �= 0, then �(0, 0) �= 0, but the deformation produces � which may be different from zero
not everywhere. This deformation changes J and, therefore, changes the elliptic curve. We
also note that for this solution the family of deformed cubics is the algebraic variety too.

Remark 3. For the system (62) it is possible to give a Lax representation [10]. Starting from

the elliptic curve p3
2 = λ3 + u2λ

2 + u1λ + u0, one defines �i = (
λ

i+ 3
2

p3

)
+p3, i � 0, where ( )+

means the polynomial part in λ. The hierarchy can be written as

∂iλ = {�i, λ}x3,p3 .

These equations also define a deformation for the eliptic curve.
The zero curvature relations for �i imply also the existence of a function S satisfying ∂iS = �i .
This is a first step in the direction of a comparison of our approach with the string equation
approach [20].

Thus, it is very natural to look for coisotropic deformations of moduli starting directly from
the canonical form (65) of the elliptic curve. One immediately finds that the canonical Poisson
structure considered before is not appropriate in this case, since the coisotropy condition with
such a Poisson bracket gives rise to only trivial deformations. Thus, one should search for an
adequate Poisson structure.

One way to find it is to study transformation of the canonical Poisson structure under
the transformations of Darboux coordinates pi, xi to new coordinates πi, τi given by formula
(67) and by π5 = p5, τi = xi, i = 2, 3, 5. Direct calculation gives the following transformed
Poisson structure:

{τi, τj }τπ = 0, i, j = 2, 3, 5

{τi, πj }τπ = δij , i, j = 2, 3, 5

{πi, πj }τπ = 1

3

∂u3

∂x3
δi3δj2 +

1

3

∂u3

∂x5
δi5δj2, i, j = 2, 3, 5.

(72)

It is not difficult to check that the coisotropy condition

{Ec, J
(5)}τπ |� = 0 (73)

with the Poisson bracket (72) and J (5)|p2=π2− 1
3 u3

= π5 − π2π3 + u3
6 π3 gives the system (68).

One can perform similar transformations in other cases. The problem of consistency of an
algebraic curve and the corresponding Poisson structure which allow us to construct nontrivial
coisotropic deformations will be discussed elsewhere.

Finally, we note that the results of this section can be extended to hyperelliptic curves.
Indeed, if one takes a hyperelliptic curve

p2n+1
2 = p2

2n+1 +
2n∑
i=0

vi(x2n+1, x2n+3)p2
i , (74)

and chooses the polynomial functions of the form fm = p2n+3 −( ∑m
i=0 ui(x2n+1, x2n+3)p2

i
)
p2n+1, then the coisotropy condition with the canonical Poisson

bracket reproduces hydrodynamical type systems derived by a different method in the
paper [10].

12
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7. Three-dimensional deformations of elliptic curves and Poisson structures

We will consider now fully three-dimensional deformations of the general cubic (57).
We take the canonical Poisson bracket in R6, choose the generating function as f4 =
p4 − p2

2 − u2p3 − u1p2 − u0 and denote deformation variables by x2, x3, x4. The coisotropy
condition takes the form

{p4 − P4(p2, p3), E}|� = c7p2
2p3 + c6p2

3 + c5p2p3 + c4p2
2 + c3p3 + c2p2 + c0 = 0, (75)

where

c7 = 2
∂u4

∂x2
− 3

∂v2

∂x2

c6 = 2
∂u3

∂x2
− 3

∂v1

∂x2
− u4

∂v2

∂x2
+ 2

∂v2

∂x3

c5 = v1
∂u4

∂x2
− u4

∂v1

∂x2
− 2u3

∂v2

∂x2
+ v2

∂u4

∂x3
+ u4

∂v2

∂x3
− u4

2 ∂v2

∂x2
− ∂u4

∂x4
+ 2

∂u2

∂x2
+ 2

∂v1

∂x3

c4 = −u4u3
∂v2

∂x2
+ v1

∂u3

∂x2
− ∂u3

∂x4
+ 2

∂u1

∂x2
− 3

∂v0

∂x2

− 2u3
∂v1

∂x2
+ v2

∂u3

∂x3
− u4

∂v1

∂x3
+ 2u3

∂v2

∂x3

c3 = −u4u2
∂v2

∂x2
− ∂u2

∂x4
+ 2

∂v0

∂x3
+ v1

∂u2

∂x2
− u4

∂v0

∂x2
− u1

∂v2

∂x2
+ v2

∂u2

∂x3
+ u2

∂v2

∂x3

c2 = −u4u1
∂v2

∂x2
− ∂u1

∂x4
+ 2

∂u0

∂x2
+ v1

∂u1

∂x2
− 2u3

∂v0

∂x2
− u1

∂v1

∂x2

+ v2
∂u1

∂x3
− u4

∂v0

∂x3
− u2

∂v1

∂x3
+ 2u1

∂v2

∂x3

c0 = v1
∂u0

∂x2
− u1

∂v0

∂x2
+ v2

∂u0

∂x3
− u2

∂v0

∂x3
− ∂u0

∂x4
− u4u0

∂v2

∂x2
+ 2u0

∂v2

∂x3
.

(76)

Thus, the coisotropy condition (75) is equivalent to the equations ci = 0. The conditions
c7 = 0 and c6 = 0 imply that

v2 = 2

3
u4, v1 = 2

3
u3 − 2

9
u4

2 +
4

3

∂

∂x2

−1 ∂u4

∂x3
. (77)

The rest of these conditions give rise to the system

∂u4

∂x4
= − 2

3

∂

∂x2
(u2u3) − 5

9
u4

2 ∂u4

∂x2
+

4

9
u4

∂u4

∂x3
+ 2

∂u2

∂x2
+

4

3

∂u3

∂x3

+
4

9

∂u4

∂x2

∂

∂x2

−1 ∂u4

∂x3
+

8

9

∂

∂x2

−1 ∂2u4

∂x3
2

∂u3

∂x4
= − 2

3
u4u3

∂u4

∂x2
+v1

∂u3

∂x2
+ 2

∂u1

∂x2
− 3

∂v0

∂x2
− 2u3

∂v1

∂x2
+

2

3
u4

∂u3

∂x3
− u4

∂v1

∂x3
+

4

3
u3

∂u4

∂x3
∂u2

∂x4
= − 2

3
u4u2

∂u4

∂x2
+ 2

∂v0

∂x3
+ v1

∂u2

∂x2
− u4

∂v0

∂x2
− 2

3
u1

∂u4

∂x2
+

2

3
u4

∂u2

∂x3
+

2

3
u2

∂u4

∂x3
∂u1

∂x4
= − 2

3
u4u1

∂u4

∂x2
+ 2

∂u0

∂x2
+ v1

∂u1

∂x2
− 2u3

∂v0

∂x2
− u1

∂v1

∂x2
+

2

3
u4

∂u1

∂x3

− u4
∂v0

∂x3
− u2

∂v1

∂x3
+

4

3
u1

∂u4

∂x3
∂u0

∂x4
= v1

∂u0

∂x2
− u1

∂v0

∂x2
+

2

3
u4

∂u0

∂x3
− u2

∂v0

∂x3
− 2

3
u4u0

∂u4

∂x2
+

4

3
u0

∂u4

∂x3
,

(78)

where again v1 = 2
3u3 − 2

9u4
2 + 4

3
∂

∂x2

−1 ∂u4
∂x3

.
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This system governs three-dimensional coisotropic deformations of the elliptic curve (57).
From the viewpoint of deformations of space curves it describes deformations of a space
curve which is the intersection of a cylindrical surface generated by the cubic (57) and a space
quadric defined by the equation f4 = p4 − p2

2 − u2p3 − u1p2 − u0 = 0.
We note that this system contains an arbitrary field v0. It is associated with the gauge

freedom for the system. In the gauge

v0 = 1

27
u2

4u3 − 1

6
u2

3 − 2

3
u1 − 4

9

∂

∂x2

−1 ∂

∂x3

(
u2 − 1

27
u3

4 +
1

6
u3u4

)
, (79)

this system coincides with the dispersionless limit of the first hidden KP system considered
in [16]. So, it is natural to refer to the system (78) as the genus 1 KP system. Now we will
extend the observation on the transformation of the Poisson structure done in the previous
section to the three-dimensional case and will analyse the relation between different Poisson
structures which produce the same integrable systems. We consider the general cubic (57).
As before admissible transformations are those which do not change the genus. Let us
denote new coordinates by ξ2,3,4, π2,3,4. The only admissible transformations are the graded
transformations π2 = p2 + α(x2, x3, x4) and π3 = p3 + β1(x2, x3, x4)p2 + β0(x2, x3, x4).
In order to preserve the gradation, we perform a similar change of the coordinate π4 =
p4 + γ3(x2, x3, x4)p2

2 + γ2(x2, x3, x4)p3 + γ1(x2, x3, x4)p2 + γ0(x2, x3, x4). Finally, the
polynomiality in the πi variables of the family of Poisson tensors is preserved only if an
adequate change of variables ξi = ξi(x2, x3, x4) for i = 2, 3, 4 is performed.

The inverse to such transformation is of the form

xi = xi(ξ2, ξ3, ξ4) i = 2, 3, 4

p2 = π2 − α

p3 = π3 − β1π2 + (αβ1 − β0) (80)

p4 = π4 − γ3π2
2 − γ2π3 + (2αγ3 + γ2β1 − γ1)π2

+ (−α2γ3 − αβ1γ2 + β0γ2 + αγ1 − γ0),

where α = α(x = x(ξ)) and analogously for the other coefficients. Under this transformation,
the elliptic curve is converted to

Eg = π3
2 − π2

3 − (u4 + 2β1)π2π3 − (−u4β1 − β1
2 − 3α + u3)π2

2

−(−u4α + u2 − 2β1α + 2β0)π3

−(−2β1β0 − u4β0 + 2u4β1α + 2β1
2α + 3α2 + u1 − 2u3α − u2β1)π2

−(u2β1α + u0 + 2β1αβ0 − β1
2α2 − β0

2 + u3α
2 − u2β0 − α3

−u4β1α
2 + u4αβ0 − u1α), (81)

and the deformation function becomes

J (4)
g = π4 − (γ3 + 1)π2

2 − (γ2 + v2)π3 − (−2γ3α + γ1 − γ2β1 − 2α − v2β1 + v1)π2

− (γ3α
2 + γ2β1α − γ2β0 − γ1α + γ0 + α2 + v2β1α − v2β0 − v1α + v0).

Then the canonical Poisson structure is transformed into the following:

{ξi, ξj } = 0 i, j = 2, 3, 4

{ξi, π2} = ∂ξi

∂x2

∣∣∣∣
x=x(ξ)

i = 2, 3, 4

{ξi, π3} = ∂ξi

∂x3

∣∣∣∣
x=x(ξ)

+ β1
∂ξi

∂x2

∣∣∣∣
x=x(ξ)

i = 2, 3, 4

14
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{ξi, π4} = 2γ3
∂ξi

∂x2

∣∣∣∣
x=x(ξ)

π2 +
∂ξi

∂x4

∣∣∣∣
x=x(ξ)

+ γ2
∂ξi

∂x3

∣∣∣∣
x=x(ξ)

+ (γ1 − 2γ3α)
∂ξi

∂x2

∣∣∣∣
x=x(ξ)

i = 2, 3, 4

{π2, π3} = −∂β1

∂x2

∣∣∣∣
x=x(ξ)

π2 +

(
∂α

∂x3
+

∂

∂x2
(αβ1 − β0)

) ∣∣∣∣
x=x(ξ)

{π2, π4} = ∂γ3

∂x2

∣∣∣∣
x=x(ξ)

π2
2 − ∂γ2

∂x2

∣∣∣∣
x=x(ξ)

π3 +

(
∂

∂x2
(2αγ3 − γ1) + β1

∂γ2

∂x2

) ∣∣∣∣
x=x(ξ)

π2

+

(
∂

∂x2
(αγ1 − γ0 − α2γ3) + (αβ1 − β0)

∂γ2

∂x2
+ γ2

∂α

∂x3
+

∂α

∂x4

) ∣∣∣∣
x=x(ξ)

(82)

{π3, π4} =
(

2γ3
∂β1

∂x2
− β1

∂γ3

∂x2
− ∂γ3

∂x3

) ∣∣∣∣
x=x(ξ)

π2
2 +

(
−∂γ2

∂x3
− β1

∂γ2

∂x2

) ∣∣∣∣
x=x(ξ)

π3

+

(
2α

∂γ3

∂x3
+ 2αβ1

∂γ3

∂x2
− 4αγ3

∂β1

∂x2
+ β1

∂γ2

∂x3
+ β1

2 ∂γ2

∂x2
+ 2γ3

∂β0

∂x2
− ∂γ1

∂x3

−β1
∂γ1

∂x2
+

∂β1

∂x4
+ γ2

∂β1

∂x3
+ γ1

∂β1

∂x2

) ∣∣∣∣
x=x(ξ)

π2 +

(
−α2 ∂γ3

∂x3
− α2β1

∂γ3

∂x2

+ 2α2γ3
∂β1

∂x2
− αβ1

∂γ2

∂x3
+ β0

∂γ2

∂x3
− αβ1

2 ∂γ2

∂x2
+ β0β1

∂γ2

∂x2
− 2αγ3

∂β0

∂x2

+ α
∂γ1

∂x3
+ αβ1

∂γ1

∂x2
− α

∂β1

∂x4
− αγ2

∂β1

∂x3
− αγ1

∂β1

∂x2
− ∂γ0

∂x3
+

∂β0

∂x4

+ γ2
∂β0

∂x3
+ γ1

∂β0

∂x2
− β1

∂γ0

∂x2

) ∣∣∣∣
x=x(ξ)

.

With the choice α = 1
3u3 + 1

12 (u4)
2, β0 = − 1

2u2, β1 = − 1
2u4, equation (81) takes the canonical

form and the Poisson structure (82) becomes an appropriate one for constructing three-
dimensional deformations of the moduli g2 and g3 of the elliptic curves. The corresponding
equations are too complicated to be presented here.

The observations made in this and the previous section naturally lead to the introduction
of a notion of equivalent Poisson structures in the framework of the theory of coisotropic
deformations. This remark is due to Jean–Claude Thomas and Volodya Rubtsov.

8. Coisotropic deformations of curves and surfaces in R4

Deformations of curves in R4 defined by three equations can be studied analogously to the
three-dimensional case. For the curves given by the equations

f1 = p1p2 + ap1 + bp2 + c = 0, (83)

f2 = p3 +
n∑

k=1

αkp
k
1 = 0, f3 = p4 +

m∑
k=1

βkp
k
2 = 0 (84)

with arbitrary n and m the coisotropic deformations are governed by the CSs which coincide
with equations of the universal Whitham hierarchy on the Riemann sphere with two punctures
(see [13]).

An interesting particular case corresponds to

f1 = p1p2 − 1 = 0, (85)

f2 = p3 + ap1 − a = 0, f3 = p4 + bp2 − b = 0, (86)
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for which the curve is the intersection of the cylindrical hyperbola and two hyperplanes. In
order to get nontrivial coisotropic deformations in this case one has to choose the Poisson
bracket in the form (see [14])

{f, g} =
4∑

k=1

γk

(
∂f

∂pk

∂g

∂xk

− ∂f

∂xk

∂g

∂pk

)
(87)

where γ1 = p1, γ2 = −p2, γ3 = γ4 = 1. Then the coisotropy conditions

{fj , fk}|� = 0, j, k = 1, 2, 3 (88)

give rise to the following CS:

ax1 + ax2 = 0, bx1 + bx2 = 0, (89)

ax4 + abx1 = 0, bx3 − bax2 = 0. (90)

This system implies that the variable � = log(ab) obeys the equation

�x3x4 + (exp �)x1x1 = 0, (91)

which is the well-known Boyer–Finley or dispersionless two-dimensional Toda lattice (2DTL)
equation. Choosing f2 and f3 as the polynomials of any order in p1 and p2, respectively, one
gets coisotropic deformations of curves in R4 described by higher d2DTL equations.

Coisotropic deformations can also be constructed for algebraic varieties of other types in
R4. For instance, let us consider a pencil of hyperplanes in R4 defined by the equations

f1 = p3 + (a − λ)p1 + bp2 = 0, (92)

f2 = p4 + cp1 + (d − λ)p2 = 0, (93)

where λ is a parameter. The coisotropy condition {f1, f2}|� = 0 for all values of λ with the
canonical Poisson bracket in R8 gives rise to

a = �x1 , b = �̃x1 , c = �x2 , d = �̃x2 (94)

and the equations

�x1x4 − �x2x3 + �x2�x1x1 − �x1�x1x2 + �̃x2�x1x2 − �̃x1�x2x2 = 0, (95)

�̃x1x4 − �̃x2x3 + �̃x2�̃x1x2 − �̃x1�̃x2x2 + �x2�̃x1x1 − �x1�̃x1x2 = 0. (96)

This CS describes the coisotropic deformations of the pencil of the hyperplanes. The system
(93) admits the constraint � = �x2 , �̃ = −�x1 under which it is reduced to the single
equation

�x1x4 − �x2x3 + �x1x1�x2x2 − (�x1x2)
2 = α(x1, x3, x4), (97)

where α(x1, x3, x4) is an arbitrary function. At α = 0 it is the celebrated heavenly equation
[26].

This last example has a natural extension to the spaces of any dimension. Indeed, let us
consider a rational pencil of hyperplanes in Rn defined by the equations

f1 =
n∑

k=1

ak(λ)pk = 0, f2 =
n∑

k=1

bk(λ)pk = 0, (98)

where ak(λ) and bk(λ) are certain rational functions of the parameter λ. The coisotropy
condition {f1, f2}|� = 0 with the canonical Poisson bracket in R2n for all values of λ is
equivalent to the system of differential equations for the coefficients of the rational functions
ak(λ), bk(λ). This system coincides with that considered in [31] in connection with the
commutativity condition of multidimensional vector fields. This coincidence is not accidental.
It is a well-known fact that the expression for the commutator of vector fields is in a one-to-one
correspondence with the expression of the Poisson bracket of functions linear in momenta pj(
pj ←→ ∂

∂xj

)
.
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9. Conclusion

The coisotropic deformations studied in this paper form a special class of deformations of
algebraic varieties. CSs describing such deformations represent themselves as the differential
constraints on coefficients of the functions fj , i.e. on the coordinates of parameter space
for algebraic variety (for this notion, see e.g. [21]). Solutions of CSs generate particular
subvarieties of dimension n (surfaces, hypersurfaces, etc) in the parameter space. Examples
of CSs considered in the paper are the integrable hydrodynamical type systems. They have a
number of remarkable properties (infinite sets of integrals, symmetries, etc). These properties
are inherited by the deformed algebraic varieties and they could be of algebro-geometrical
relevance. A comparison of the present approach to algebraic deformations with the Krichever
approach [20] is actually in progress. In the case of (2+1)-dimensional polynomial deformation
of elliptic curves, for example, it is possible to show [18] that the equations are related to
the linear flows on the first Birkhoff stratum and the currents can be obtained as a suitable
projection of a complex parameter. This result is a generalization of the (1+1)-dimensional
case present in [10] (see also remark 3 in this paper). However, the coisotropic deformation
approach to the tau structure of the hierarchy, studied for the KP case in [13], is at the moment
an open problem in the generic case.

For general solutions of CSs, each member (for fixed xi, i = 1, . . . , n) of the family of
deformed varieties is an algebraic variety in Rn, but the totality of them (i.e. submanifold �)
is not. Polynomial solutions of CSs are then of particular interest. For them the whole family
of deformed algebraic varieties is an algebraic variety too (in R2n). Thus, for such solutions
of CSs families of coisotropically deformed algebraic varieties belong to the class of families
of algebraic varieties which ‘vary algebraically with parameters’. This class is ‘one that is
fundamental in much of algebraic geometry’ [21] (p 41).
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